Performance Prediction of Rolling Bearing Using EEMD and WCDPSO-KELM Methods

Author:

Li XiumeiORCID,Zhao Huimin

Abstract

Research on bearings performance degradation trend is significant, and can greatly reduce the loss caused by potential faults in the whole life-cycle of rolling bearings. It is also a very important part of Prognostic and Health Management (PHM). This paper proposed a new performance degradation prediction method based on optimized kernel extreme learning machine (KELM), improved particle swarm optimization (PSO) and Ensemble Empirical Mode Decomposition (EEMD). Firstly, the particle swarm optimization algorithm was improved by adjusting the inertia weight and linear learning factor and introducing a disturbance term, namely WCDPSO. Then, the penalty coefficient and kernel parameters of KELM were optimized by the WCDPSO, and the WCDPSO-KELM model was obtained. Subsequently, the EEMD method was used to extract original features from sample data, and a performance degradation index is selected from the EEMD feature space, which was input into the WCDPSO-KELM model in order to build a bearing performance degradation prediction trend model. Finally, the proposed method was verified by datasets of rolling bearings that were provided by the PRONOSTIA platform. Experimental results confirmed that the proposed method can efficiently predict the performance degradation trend of rolling bearings.

Funder

Liaoning Provincial Natural Science Foundation Guidance Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3