Dynamic Viewpoint Selection for Sweet Pepper Maturity Classification Using Online Economic Decisions

Author:

van Essen RickORCID,Harel BenORCID,Kootstra GertORCID,Edan YaelORCID

Abstract

This paper presents a rule-based methodology for dynamic viewpoint selection for maturity classification of red and yellow sweet peppers. The method makes an online decision to capture an additional next-best viewpoint based on an economic analysis that considers potential misclassification and robot operational costs. The next-best viewpoint is selected based on color variations on the pepper. Peppers were classified into mature and immature using a random forest classifier based on principle components of various color features derived from an RGB-D camera. The method first attempts to classify maturity based on a single viewpoint. An additional viewpoint is acquired and added to the point cloud only when it is deemed profitable. The methodology was evaluated using leave-one-out cross-validation on datasets of 69 red and 70 yellow sweet peppers from three different maturity stages. Classification accuracy was increased by 6% and 5% using dynamic viewpoint selection along with 52% and 12% decrease in economic costs for red and yellow peppers, respectively, compared to using a single viewpoint. Sensitivity analyses were performed for misclassification and robot operational costs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algorithm for Determination of Pepper Maturity Classes by Combination of Color and Spectral Indices;Rural Sustainability Research;2024-08-01

2. Sensing and Artificial Perception for Robots in Precision Forestry: A Survey;Robotics;2023-10-05

3. Graph-Based View Motion Planning for Fruit Detection;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3