An Enhanced Routing and Scheduling Mechanism for Time-Triggered Traffic with Large Period Differences in Time-Sensitive Networking

Author:

Nie HongruiORCID,Li Shaosheng,Liu Yong

Abstract

In the field of the automotive area as well as industrial control, real-time communication requires deterministic delivery with low delay and bounded jitter. Real-time communication in these networks requires transmission schedule and routing, which is an NP-hard problem. In this paper, we present an offline routing and scheduling method based on integer linear programming (ILP), with a flow preprocessing step to explore the period correlation of time-triggered (TT) traffic in time-sensitive networking (TSN). First, a multiperiod flow routing and scheduling algorithm based on flow classification is proposed to improve the scheduling success rate and reduce execution time. The flow classification technique obtained a more fine-grained TT traffic classification, which can be superimposed on any routing and scheduling algorithms. Second, an adaptive period compensation scheduling algorithm based on flow classification is proposed in simple network architecture conditions. The evaluations demonstrate that the proposed algorithms improve scheduling success rate and reduce execution time compared with baseline methods in all test cases. In addition, we can adapt our different proposed algorithms in different network architecture conditions to schedule various flows with different periods and sizes.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TSN Network Scheduling—Challenges and Approaches;Network;2023-12-16

2. DDPG Based Dynamic Scheduling Optimization Mechanism in Real Switch;2023 15th International Conference on Communication Software and Networks (ICCSN);2023-07-21

3. Flow Preprocessing for Online Routing and Scheduling in Time-Sensitive Networks;2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB);2023-06-14

4. A Perspective on Ethernet in Automotive Communications—Current Status and Future Trends;Applied Sciences;2023-01-18

5. A Survey of Scheduling Algorithms for the Time-Aware Shaper in Time-Sensitive Networking (TSN);IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3