Flow Analysis of PM/NOX Aftertreatment System for Emergency Generator

Author:

Park GiyoungORCID,Bang Hyowon,Lee Seangwock

Abstract

Emergency generators normally use diesel engines. The generators need to conduct weekly no-load operation inspections to ensure stable performance in emergency situations. In particular, the generators with large diesel engines mainly use rectangle-type filter substrates. To minimize hazardous emissions generated by generators, optimizing the reduction efficiency through computational fluid dynamics (CFD) analysis of flow characteristics of particulate matter (PM)/NOX reduction system is important. In this study, we analyzed internal flow by CFD, which is difficult to confirm by experimental method. The main factors in our numerical study are the changes of flow uniformity and back pressure. As a result, the flow distribution characteristics according to the cross-sectional shape are similar at high engine loads. Spraying urea in the reverse direction increases static pressure, greatly improving flow uniformity. Raising the selective catalyst reduction (SCR) diffuser angle to 30 degrees improves both back pressure and flow uniformity characteristics, and when the porosity increases, both flow uniformity and back pressure decrease.

Funder

Ministry of Environment

Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference20 articles.

1. Control Oriented Modeling of SCR Systems for Automotive Application

2. A Numerical study on the NOX Reduction Rate Depending on the Flow Uniformity Index of NH3 in front of the Catalytic Converter https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02174714

3. CFD studies on effects of SCR mixers on the performance of urea conversion and mixing of the reducing agent

4. Optimization of SCR inflow uniformity based on CFD simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3