Water and Sediments of an Acidic Hot Spring—Distinct Differentiation with Regard to the Microbial Community Composition and Functions

Author:

Maltseva Anastasia I.1,Klyukina Alexandra A.1ORCID,Elcheninov Alexander G.1,Pimenov Nikolay V.1,Rusanov Igor I.1,Kublanov Ilya V.1,Kochetkova Tatiana V.1ORCID,Frolov Evgeny N.1ORCID

Affiliation:

1. Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, 60-Let Oktyabrya Prospect, 7, Bld. 2, 119071 Moscow, Russia

Abstract

Over the last half-century, microbial communities of the Kamchatka hot springs have been largely studied using molecular, radioisotopic, and cultural approaches. Generally, these results were obtained for mixed samples of water with sediments, for only hydrothermal water, or for only sediment samples. Simultaneous comparative analysis of the microbial communities of water and sediments was performed for only one Kamchatka hot spring with circumneutral pH. Here, the microbial communities of both sediments and water (separately) of hot spring #4229 (the Uzon Caldera, Kamchatka) with a temperature of 50–56 °C and pH of 3.2 were analyzed by 16S rRNA gene V4 fragment amplicon sequencing. It was revealed that the microbial community of sediments was represented by uncultured phylogenetically deep-branching lineages of archaea, such as ARK-15 within Thermoplasmatota and ‘Ca. Marsarchaeales’ from the Thermoproteota phyla. Metagenome analysis showed that these archaea most probably carried out the degradation of organic matter. The microbial community of the hot water is represented by thermoacidophilic, (micro)aerobic, chemolithoautotrophic, hydrogen- and sulfur-oxidizing bacteria of the genera Hydrogenobaculum (phylum Aquificota) and Acidithiobacillus (phylum Pseudomonadota). Radioisotopic tracing and DNA-stable-isotope probing techniques proved their role as primary producers in the hot spring. The experiment revealed significant differences in the composition and functions of the microbial communities of sediments and water through the example of a typical acidic hot spring in Kamchatka.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3