A Machine Learning Specklegram Wavemeter (MaSWave) Based on a Short Section of Multimode Fiber as the Dispersive Element

Author:

Inalegwu Ogbole C.1,II Rex E. Gerald1,Huang Jie1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0040, USA

Abstract

Wavemeters are very important for precise and accurate measurements of both pulses and continuous-wave optical sources. Conventional wavemeters employ gratings, prisms, and other wavelength-sensitive devices in their design. Here, we report a simple and low-cost wavemeter based on a section of multimode fiber (MMF). The concept is to correlate the multimodal interference pattern (i.e., speckle patterns or specklegrams) at the end face of an MMF with the wavelength of the input light source. Through a series of experiments, specklegrams from the end face of an MMF as captured by a CCD camera (acting as a low-cost interrogation unit) were analyzed using a convolutional neural network (CNN) model. The developed machine learning specklegram wavemeter (MaSWave) can accurately map specklegrams of wavelengths up to 1 pm resolution when employing a 0.1 m long MMF. Moreover, the CNN was trained with several categories of image datasets (from 10 nm to 1 pm wavelength shifts). In addition, analysis for different step-index and graded-index MMF types was carried out. The work shows how further robustness to the effects of environmental changes (mainly vibrations and temperature changes) can be achieved at the expense of decreased wavelength shift resolution, by employing a shorter length MMF section (e.g., 0.02 m long MMF). In summary, this work demonstrates how a machine learning model can be used for the analysis of specklegrams in the design of a wavemeter.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3