Evaluation of Leading Smartwatches for the Detection of Hypoxemia: Comparison to Reference Oximeter

Author:

Walzel Simon1,Mikus Radek1,Rafl-Huttova Veronika1ORCID,Rozanek Martin1ORCID,Bachman Thomas E.1,Rafl Jakub1ORCID

Affiliation:

1. Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01 Kladno, Czech Republic

Abstract

Although smartwatches are not considered medical devices, experimental validation of their accuracy in detecting hypoxemia is necessary due to their potential use in monitoring conditions manifested by a prolonged decrease in peripheral blood oxygen saturation (SpO2), such as chronic obstructive pulmonary disease, sleep apnea syndrome, and COVID-19, or at high altitudes, e.g., during sport climbing, where the use of finger-sensor-based pulse oximeters may be limited. The aim of this study was to experimentally compare the accuracy of SpO2 measurement of popular smartwatches with a clinically used pulse oximeter according to the requirements of ISO 80601-2-61. Each of the 18 young and healthy participants underwent the experimental assessment three times in randomized order—wearing Apple Watch 8, Samsung Galaxy Watch 5, or Withings ScanWatch—resulting in 54 individual experimental assessments and complete datasets. The accuracy of the SpO2 measurements was compared to that of the Radical-7 (Masimo Corporation, Irvine, CA, USA) during short-term hypoxemia induced by consecutive inhalation of three prepared gas mixtures with reduced oxygen concentrations (14%, 12%, and 10%). All three smartwatch models met the maximum acceptable root-mean-square deviation (≤4%) from the reference measurement at both normal oxygen levels and induced desaturation with SpO2 less than 90%. Apple Watch 8 reached the highest reliability due to its lowest mean bias and root-mean-square deviation, highest Pearson correlation coefficient, and accuracy in detecting hypoxemia. Our findings support the use of smartwatches to reliably detect hypoxemia in situations where the use of standard finger pulse oximeters may be limited.

Funder

Czech Technical University in Prague

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3