Risk Assessment of Mining Heritage Reuse in Public–Private-Partnership Mode Based on Improved Matter–Element Extension Model

Author:

Yang Shan1ORCID,Zhuo Shengyuan1,Xu Zitong1ORCID,Chen Jianhong1

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Abstract

With the development and utilization of resources, mineral-resource cities face the dilemma of resource depletion, the environmental restoration of mines, and industrial transformation. Reusing their mining heritage is a good way for these cities to change their mono-industrial structure and vigorously develop successor industries. Due to the complexity of reusing mining heritage, introducing the “Public–Private-Partnership” (PPP) mode can be a good solution to the problems of the government’s mining heritage reuse, such as large capital investment and a long construction-cycle time. To accurately classify the risk of reuse of mining heritage in the PPP mode, 26 indicators are selected to construct the evaluation index system of mining heritage reuse in the PPP mode based on five aspects: social capital-side, contractor-side, government-side, civilian-side, and the natural environment. The path coefficients of the structural equation model are used to calculate the weights of the indicators. The improved matter–element extension model is constructed to evaluate the reuse of mining heritage in the PPP mode. The Jiaozuo-Centennial Mining Heritage Park project is the object of research for applying the model. The results show that the risk evaluation index system combines the risk factors from the stakeholders’ perspective. The risk-evaluation model of the mining heritage reuse PPP project is constructed based on the combination of the improved matter–element extension model, the calculation of the asymmetric closeness, and the structural equation modeling method, which solves the drawbacks of the traditional model, such as the difficulty of determining the weights of the indicators, the incomplete scope of the material element domains, and the poor calculation of the comprehensive correlation degree. The case analysis shows that the risk level of the Jiaozuo-Centennial Mining Heritage Park project is Level II. This aligns with the actual situation and verifies the feasibility of the risk-evaluation model applied to the actual project. The research in this paper fills the gap in the risk model of mining heritage reuse in the PPP mode, enriches the theoretical system of risk evaluation of mining heritage reuse projects, and provides reference significance for similar mining heritage development projects in the future.

Funder

ational Natural Science Foundation Project of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3