Survey of Point Cloud Registration Methods and New Statistical Approach

Author:

Marek Jaroslav1ORCID,Chmelař Pavel2

Affiliation:

1. Department of Mathematics and Physics, Faculty of Electrical Engineering and Informatics, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic

2. Department of Electrical Engineering, Faculty of Electrical Engineering and Informatics, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic

Abstract

The use of a 3D range scanning device for autonomous object description or unknown environment mapping leads to the necessity of improving computer methods based on identical point pairs from different point clouds (so-called registration problem). The registration problem and three-dimensional transformation of coordinates still require further research. The paper attempts to guide the reader through the vast field of existing registration methods so that he can choose the appropriate approach for his particular problem. Furthermore, the article contains a regression method that enables the estimation of the covariance matrix of the transformation parameters and the calculation of the uncertainty of the estimated points. This makes it possible to extend existing registration methods with uncertainty estimates and to improve knowledge about the performed registration. The paper’s primary purpose is to present a survey of known methods and basic estimation theory concepts for the point cloud registration problem. The focus will be on the guiding principles of the estimation theory: ICP algorithm; Normal Distribution Transform; Feature-based registration; Iterative dual correspondences; Probabilistic iterative correspondence method; Point-based registration; Quadratic patches; Likelihood-field matching; Conditional random fields; Branch-and-bound registration; PointReg. The secondary purpose of this article is to show an innovative statistical model for this transformation problem. The new theory needs known covariance matrices of identical point coordinates. An unknown rotation matrix and shift vector have been estimated using a nonlinear regression model with nonlinear constraints. The paper ends with a relevant numerical example.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Addressing the generalization of 3D registration methods with a featureless baseline and an unbiased benchmark;Machine Vision and Applications;2024-03-23

2. Gaussian Mixture Probability Hypothesis Density Filter for Heterogeneous Multi-Sensor Registration;Mathematics;2024-03-17

3. Point Cloud Registration based on Gaussian Mixtures and Pairwise Wasserstein Distances;2023 IEEE Symposium Sensor Data Fusion and International Conference on Multisensor Fusion and Integration (SDF-MFI);2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3