A Novel Two-Step Inertial Viscosity Algorithm for Bilevel Optimization Problems Applied to Image Recovery

Author:

Wattanataweekul Rattanakorn1,Janngam Kobkoon2,Suantai Suthep3

Affiliation:

1. Department of Mathematics, Statistics and Computer, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

2. Graduate Ph.D. Degree Program in Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

3. Research Center in Optimization and Computational Intelligence for Big Data Prediction, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

This paper introduces a novel two-step inertial algorithm for locating a common fixed point of a countable family of nonexpansive mappings. We establish strong convergence properties of the proposed method under mild conditions and employ it to solve convex bilevel optimization problems. The method is further applied to the image recovery problem. Our numerical experiments show that the proposed method achieves faster convergence than other related methods in the literature.

Funder

NSRF via the program Management Unit for Human Resources & Institutional Development, Research, and Innovation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference44 articles.

1. Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil, M. (2018, January 10–15). Bilevel programming for hyperparameter optimization and meta-learning. Proceedings of the International Conference on Machine Learning (ICML), Stockholm, Sweden.

2. Shaban, A., Cheng, C.-A., Hatch, N., and Boots, B. (2019, January 16–18). Truncated back-propagation for bilevel optimization. Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), Okinawa, Japan.

3. Classification model selection via bilevel programming;Kunapuli;Optim. Methods Softw.,2008

4. Flamary, R., Rakotomamonjy, A., and Gasso, G. (2014). Regularization, Optimization, Kernels, and Support Vector Machines, Chapman and Hall/CRC.

5. Konda, V.R., and Tsitsiklis, J.N. (December, January 30). Actor-critic algorithms. Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Denver, CO, USA.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3