An Analytical Framework for Assessing the Unsaturated Bearing Capacity of Strip Footings under Transient Infiltration

Author:

Xu Sheng1,Zhou De1

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

Abstract

The evaluation of the bearing capacity of strip footings generally assumes that the soil is either dry or fully saturated, which contradicts the actual condition in nature where the soil is often in a partially saturated state. Furthermore, infiltration has a significant impact on the shear strength of the soil. Following the upper bound theory of the limit analysis, this article provides a theoretical framework for assessing the bearing capacity under transient flow with linear variation in infiltration intensity for the first time. Firstly, the closed form of suction stress under linear transient infiltration is derived using Laplace transform and introduced into the Mohr–Coulomb criterion. A discrete failure mechanism with fewer variables and higher accuracy is provided to ensure kinematic admissibility. The upper bound solution for bearing capacity is obtained by solving the power balance equation. The present results are compared with results from the published literature and the finite element, confirming the validity and superiority of the theoretical framework provided. A parametric analysis is also conducted on three hypothetical soil types (fine sand, silt, and clay), and the results show that unsaturated transient infiltration has a positive influence on increasing the foundation bearing capacity. The magnitude of the influence is comprehensively controlled by factors such as soil type, saturated hydraulic conductivity, infiltration intensity, infiltration time, and water table depth. The increase in bearing capacity due to unsaturated transient infiltration can be incorporated into Terzaghi’s equation as a separate component presented in tabular form for engineering design purposes.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3