Universal Stabilisation System for Control Object Motion along the Optimal Trajectory

Author:

Diveev Askhat1ORCID,Sofronova Elena1ORCID

Affiliation:

1. Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, 44, build. 2, Vavilova Str., Moscow 119333, Russia

Abstract

An attempt to construct a universal stabilisation system that ensures the object motion along specified trajectory from certain class is presented. If such a stabilisation system is constructed, then only the problem of optimal control is solved, but for a model of the object, which includes a stabilisation system and a subsystem with a reference model for generating a specified trajectory. In this case, the desired control is the control in the reference model. Statement of complete optimal control problem includes two problems, optimal control problem and stabilisation system synthesis problem for motion along given trajectory in the state space. Numerical methods for solving these problems based on evolutionary computation and symbolic regression are described. It is shown that when solving the stabilisation system synthesis problem, it is possible to obtain a universal system that provides stabilisation of the object motion relative to any trajectory from a certain class. Therefore, it is advisable to formulate an optimal control problem for an object with a motion stabilisation system. A computational example of solving the problem for the spatial motion of a quadrocopter is given.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference24 articles.

1. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F. (1985). The Mathematical Theory of Optimal Process, Gordon and Breach Science Publishers.

2. Bellman, R.E., and Dreyfus, S.E. (1962). Applied Dynamic Programming, Princeton Legacy Library.

3. Refinement of Optimal Control Problem for Practical Implementation of Its Solution;Diveev;Dokl. Math.,2023

4. Brockett, R.W., Millman, R.S., and Sussmann, H.J. (1983). Differential Geometric Control Theory, Birkhauser.

5. Stabilization of Trajectories for Systems with Nonholonomic Constraints;Walsh;IEEE Trans. Autom. Control,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3