Microscopic Pore Structure of Surrounding Rock for Underground Strategic Petroleum Reserve (SPR) Caverns in Bedded Rock Salt

Author:

Zhang Nan,Liu Wei,Zhang Yun,Shan PengfeiORCID,Shi XilinORCID

Abstract

Using salt caverns for an underground strategic petroleum reserve (SPR) is considered as an ideal approach due to the excellent characteristics of low porosity, low permeability, self-healing of damage, and strong plastic deformation ability of rock salt. Salt deposits in China are mostly layered rock salt structures, with the characteristics of many interlayers, bringing great challenges for the construction of SPR facilities. Studying the microscopic pore characteristics of the rock surrounding SPR salt caverns in different environments (with brine and crude oil erosion) is necessary because the essence of mechanical and permeability characteristics is the macroscopic embodiment of the microscopic pore structure. In this paper, XRD tests and SEM tests are carried out to determine the physical properties of storage media and surrounding rock. Gas adsorption tests and mercury intrusion tests are carried out to analyze the microscopic pore structure, specific surface area variation and total aperture distribution characteristics of SPR salt cavern host rock. Results show that: (1) Large numbers of cores in interlayer and caprock may provide favorable channels for the leakage of high-pressure crude oil and brine. (2) The blockage of pores by macromolecular organic matter (colloid and asphaltene) in crude oil will not significantly change the structural characteristics of the rock skeleton, which is beneficial to the long-term operation of the SPR salt cavern. (3) The water–rock interaction will bring obvious changes in the micro-pore structure of rock and increase the leakage risk of the storage medium. The results can provide theoretical bases and methods for the tightness analysis of China’s first underground SPR salt cavern.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3