Realization of a Generalized Switched-Capacitor Multilevel Inverter Topology with Less Switch Requirement

Author:

Ahmad Anzar,Anas MUORCID,Sarwar AdilORCID,Zaid Mohammad,Tariq MohdORCID,Ahmad JavedORCID,Beig Abdul R.ORCID

Abstract

Conventional multilevel inverter topologies like neutral point clamped (NPC), flying capacitor (FC), and cascade H bridge (CHB) are employed in the industry but require a large number of switches and passive and active components for the generation of a higher number of voltage levels. Consequently, the cost and complexity of the inverter increases. In this work, the basic unit of a switched capacitor topology was generalized utilizing a cascaded H-bridge structure for realizing a switched-capacitor multilevel inverter (SCMLI). The proposed generalized MLI can generate a significant number of output voltage levels with a lower number of components. The operation of symmetric and asymmetric configurations was shown with 13 and 31 level output voltage generation, respectively. Self-capacitor voltage balancing and boosting capability are the key features of the proposed SCMLI structure. The nearest level control modulation scheme was employed for controlling and regulating the output voltage. Based on the longest discharging time, the optimum value of capacitance was also calculated. A generalized formula for the generation of higher voltage levels was also derived. The proposed model was simulated in the MATLAB®/Simulink 2016a environment. Simulation results were validated with the hardware implementation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wind-Pv Based 31-Level Multilevel Inverter With Minimal Switches For Stand-Alone Microgrid System;2023 9th International Conference on Electrical Energy Systems (ICEES);2023-03-23

2. A Switched Capacitor Triple Boost Single-Source Thirteen-level Inverter;2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT);2023-03-11

3. Efficient evaluation of anticipated 31-level inverter for photovoltaic energy system with reduced switches;Sustainable Computing: Informatics and Systems;2022-12

4. A New Single-Source Nine-Level Quadruple Boost Multi-Level Inverter with Common Ground;2022 IEEE 10th Power India International Conference (PIICON);2022-11-25

5. A New Single-Source Switched Capacitor Based Thirteen-level Inverter;2022 IEEE 10th Power India International Conference (PIICON);2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3