Numerical Analysis of Aerodynamic Characteristics of Exhaust Passage with Consideration of Wet Steam Effect in a Supercritical Steam Turbine

Author:

Xu Qing,Lin AqiangORCID,Cai Yuhang,Ahmad Naseem,Duan Yu,Liu Chen

Abstract

To investigate the aerodynamic performance of exhaust passage under multi-phase flow, an actual case is conducted in the low-pressure double exhaust passages of 600 MW steam turbine. Then, the flow field is compared and analyzed with and without the built-in extraction pipelines based on the Eulerian–Eulerian homogenous medium multiphase method. Results show that the upstream swirling flow and downstream mixed swirling flow are the main causes to induce the entropy-increase in the exhaust passage. Moreover, the flow loss and static-pressure recovery ability in the exhaust hood are greater than those in the condenser neck. Compared with the flow field without the steam extraction pipelines, the entropy-increase increases, the static pressure recovery coefficient decreases, and the spontaneous condensation rates of wet steam decrease in the downstream area of the pipelines. With the increase of steam turbine loads, an increment in entropy-increase in the exhaust passage is 0.98 J/(kg·K) lower than that without steam extraction pipelines. Moreover, the incrementing range of uniformity coefficient is increased from 14.5% to 40.9% at the condenser neck outlet. It can be concluded that the built-in exhaustion pipeline can improve the aerodynamic performance of exhaust passage and better reflect the real state of the flow field. These research results can serve as a reference for turbine passage design.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimum Blade Geometry C-9015A to Reduce Blade Erosion;Lecture Notes in Networks and Systems;2024

2. Improvement of Wet-steam Turbines for Power Plants by Reducing the Erosion;2023 Seminar on Industrial Electronic Devices and Systems (IEDS);2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3