Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery

Author:

Wang Guoqiang,Wang Feng,Chen Bohong

Abstract

Automobile exhaust heat recovery is considered to be an effective means to enhance fuel utilization. The catalytic production of hydrogen by methanol steam reforming is an attractive option for onboard mobile applications, due to its many advantages. However, the reformers of conventional packed bed type suffer from axial temperature gradients and cold spots resulting from severe limitations of mass and heat transfer. These disadvantages limit reformers to a low efficiency of catalyst utilization. A novel rib microreactor was designed for the hydrogen production from methanol steam reforming heated by automobile exhaust, and the effect of inlet exhaust and methanol steam on reactor performance was numerically analyzed in detail, with computational fluid dynamics. The results showed that the best operating parameters were the counter flow, water-to-alcohol (W/A) of 1.3, exhaust inlet velocity of 1.1 m/s, and exhaust inlet temperature of 773 K, when the inlet velocity and inlet temperature of the reactant were 0.1 m/s and 493 K, respectively. At this condition, a methanol conversion of 99.4% and thermal efficiency of 28% were achieved, together with a hydrogen content of 69.6%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference39 articles.

1. Target Fusion Detection of LiDAR and Camera Based on the Improved YOLO Algorithm

2. An Analysis of Children Left Unattended in Parked Motor Vehicles in Brazil;Driely;Int. J. Environ. Res. Public Health,2016

3. Characteristics of Particulate and Inorganic Elements of Motor Vehicles Based on a Tunnel Environment;Feng-Hua;Environ. Sci.,2018

4. VOCs Emission from Motor Vehicles in China and Its Impact on the Atmospheric Environment;Chen;Environ. Sci.,2018

5. Electrical Vehicles—Practical Solutions for Power Traction Motor Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3