NiB-CrC Coatings Prepared by Magnetron Sputtering Using Composite Ceramic NiCr-BC Target Produced by Detonation Spray Coating

Author:

Sirota Viacheslav,Zaitsev Sergei,Prokhorenkov Dmitriy,Limarenko Mihail,Skiba Andrey,Kovaleva MarinaORCID

Abstract

A metal–ceramic composite target for magnetron sputtering was fabricated for the first time by a robotic complex for the detonation spraying of coatings equipped with a multi-chamber detonation accelerator. A mixture of metal and ceramic NiCr/B4C powders was sprayed onto the copper base of the cylindrical composite target cathode. The study of the structure of a metal–ceramic composite coating target using scanning electron microscopy showed that the coating material is dense without visible pores; the elemental composition is evenly distributed in the material. The study of the cathode sputtering area after deposition in the DC mode showed that there are uniform traces of annular erosion on the target surface. The obtained cathode target with an NiCr-70B4C coating was used to deposit the NiB-Cr7C3 coating on flat specimens of 65G steel using equipment for magnetron sputtering UNICOAT 200. The coating was applied in the Direct Current mode. A dense NiB-Cr7C3 coating with a thickness of 2 μm was obtained. The NiB-Cr7C3 coating has a quasi-amorphous structure. The microstructures and concentration of oxygen and carbon impurities throughout the entire thickness of the coating were investigated by means of transmission electron microscopy. The results of the study show that the coatings have a nanocrystalline multi-phase structure. The microhardness of the NiB-Cr7C3 coating reached 10 GPa, and the adhesion fracture load exceeded 16 N. The results will open up new prospects for the further elaboration of technology for obtaining original composite cathodes for magnetron sputtering using detonation spraying of coatings.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3