Heterostructured α-Bi2O3/BiOCl Nanosheet for Photocatalytic Applications

Author:

Teng Daoguang,Qu Jie,Li Peng,Jin Peng,Zhang Jie,Zhang Ying,Cao Yijun

Abstract

Photocatalytic degradation of organic pollutants in wastewater is recognized as a promising technology. However, photocatalyst Bi2O3 responds to visible light and suffers from low quantum yield. In this study, the α-Bi2O3 was synthetized and used for removing Cl− in acidic solutions to transform BiOCl. A heterostructured α-Bi2O3/BiOCl nanosheet can be fabricated by coupling Bi2O3 (narrow band gap) with layered BiOCl (rapid photoelectron transmission). During the degradation of Rhodamine B (RhB), the Bi2O3/BiOCl composite material presented excellent photocatalytic activity. Under visible light irradiation for 60 min, the Bi2O3/BiOCl photocatalyst delivered a superior removal rate of 99.9%, which was much higher than pristine Bi2O3 (36.0%) and BiOCl (74.4%). Radical quenching experiments and electron spin resonance spectra further confirmed the dominant effect of electron holes h+ and superoxide radical anions ·O2− for the photodegradation process. This work develops a green strategy to synthesize a high-performance photocatalyst for organic dye degradation.

Funder

The Key Specialized Research and Development Breakthrough Program in Henan province

Young Talent Enterprise Cooperative Innovation Team

National Natural Science Foundation of China

Key Scientific Research Program Plan of Colleges and Universities in Henan Province

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3