Nanostructured Hybrids Based on Tantalum Bromide Octahedral Clusters and Graphene Oxide for Photocatalytic Hydrogen Evolution

Author:

Hernández Jhon Sebastián,Shamshurin Maxim,Puche Marta,Sokolov Maxim N.ORCID,Feliz MartaORCID

Abstract

The generation of hydrogen (H2) using sunlight has become an essential energy alternative for decarbonization. The need for functional nanohybrid materials based on photo- and electroactive materials and accessible raw materials is high in the field of solar fuels. To reach this goal, single-step synthesis of {Ta6Bri12}@GO (GO = graphene oxide) nanohybrids was developed by immobilization of [{Ta6Bri12}Bra2(H2O)a4]·4H2O (i = inner and a = apical positions of the Ta6 octahedron) on GO nanosheets by taking the advantage of the easy ligand exchange of the apical cluster ligands with the oxygen functionalities of GO. The nanohybrids were characterized by spectroscopic, analytical, and morphological techniques. The hybrid formation enhances the yield of photocatalytic H2 from water with respect to their precursors and this is without the presence of precious metals. This enhancement is attributed to the optimal cluster loading onto the GO support and the crucial role of GO in the electron transfer from Ta6 clusters into GO sheets, thus suppressing the charge recombination. In view of the simplicity and versatility of the designed photocatalytic system, octahedral tantalum clusters are promising candidates to develop new and environmentally friendly photocatalysts for H2 evolution.

Funder

Consejo Superior de Investigaciones Científicas/Generalitat Valenciana

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3