Exciton States and Optical Absorption in CdSe and PbS Nanoplatelets

Author:

Baghdasaryan Davit A.,Harutyunyan Volodya A.,Hayrapetyan David B.,Kazaryan Eduard M.,Baskoutas SotiriosORCID,Sarkisyan Hayk A.

Abstract

The exciton states and their influence on the optical absorption spectrum of CdSe and PbS nanoplatelets (NPLs) are considered theoretically in this paper. The problem is discussed in cases of strong, intermediate, and weak size quantization regimes of charge carrier motion in NPLs. For each size quantization regime, the corresponding potential that adequately describes the electron–hole interaction in this mode of space quantization of charge carriers is chosen. The single-particle energy spectra and corresponding wave functions for strong intermediate and weak size quantization regimes have been revealed. The dependence of material parameters on the number of monolayers in the sample has been considered. The related selection rules and the dependence of the absorption coefficient on the frequency and polarization direction of the incident light wave were obtained. The interband transition threshold energy dependencies were obtained for each size quantization regime. The effect of dielectric coefficient mismatch and different models of electron–hole interaction potentials have been studied in CdSe and PbS NPLs. It is also shown that with an increase in the linear dimensions of the structure, the threshold frequency of absorption decreases. The binding energies and absorption coefficient results for NPL with different thicknesses agree with the experimental data. The values of the absorption exciton peaks measured experimentally are close to our calculated values for CdSe and PbS samples.

Funder

RA Science Committee

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3