Ni2P Nanoparticle-Inserted Porous Layered NiO Hetero-Structured Nanosheets as a Durable Catalyst for the Electro-Oxidation of Urea

Author:

Ma Kun,Wang Hui,Kannan Palanisamy,Subramanian PalaniappanORCID

Abstract

The electro-oxidation of urea (EOU) is a remarkable but challenging sustainable technology, which largely needs a reduced electro-chemical potential, that demonstrates the ability to remove a notable harmful material from wastewater and/or transform the excretory product of humans into treasure. In this work, an Ni2P-nanoparticle-integrated porous nickel oxide (NiO) hetero-structured nanosheet (Ni2P@NiO/NiF) catalyst was synthesized through in situ acid etching and a gas-phase phosphating process. The as-synthesized Ni2P@NiO/NiF catalyst sample was then used to enhance the electro-oxidation reaction of urea with a higher urea oxidation response (50 mA cm−2 at 1.31 V vs. RHE) and low onset oxidation potential (1.31 V). The enhanced activity of the Ni2P@NiO/NiF catalyst was mainly attributed to effective electron transport after Ni2P nanoparticle insertion through a substantial improvement in active sites due to a larger electrochemical surface area, and a faster diffusion of ions occurred via the interactive sites at the interface of Ni2P and NiO; thus, the structural reliability was retained, which was further evidenced by the low charge transfer resistance. Further, the Ni2P nanoparticle insertion process into the NiO hetero-structured nanosheets effectively enabled a synergetic effect when compared to the counter of the Ni2P/NiF and NiO/NiF catalysts. Finally, we demonstrate that the as-synthesized Ni2P@NiO/NiF catalyst could be a promising electrode for the EOU in urea-rich wastewater and human urine samples for environmental safety management. Overall, the Ni2P@NiO/NiF catalyst electrode combines the advantages of the Ni2P catalyst, NiO nanosheet network, and NiF current collector for enhanced EOU performance, which is highly valuable in catalyst development for environmental safety applications.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3