Rigorous Analysis and Systematical Design of Double-Layer Metal Superlens for Improved Subwavelength Imaging Mediated by Surface Plasmon Polaritons

Author:

Wang JingORCID,Li Zhichao,Liu Weina

Abstract

A double-layer metal superlens was rigorously analyzed and systematically designed to improve subwavelength imaging ability. It was revealed that transmission properties of the imaging system could be accurately interpreted by the five-layer waveguide mode theory—each amplification peak among the spatial frequency range of evanescent waves was associated with a corresponding surface plasmon polariton (SPP) mode of an insulator-metal-insulator-metal-insulator (IMIMI) structure. On the basis of such physical insight, evanescent waves of higher spatial frequency were effectively amplified via increasing propagation constants of symmetrically coupled short-range SPP (s-SRSPP) and antisymmetrically coupled short-range SPP (a-SRSPP), and evanescent waves of lower spatial frequency were appropriately diminished by approaching to cut off symmetrically coupled long-range SPP (s-LRSPP). A flat and broad optical transfer function of the imaging system was then achieved, and improved subwavelength imaging performance was validated by imaging an ideal thin object of two slits with a 20-nm width distanced by a 20-nm spacer, under 193-nm illumination. The resolution limit of the designed imaging system with double-layer superlens was further demonstrated to be at least ~λ/16 for an isolated two-slit object model. This work provided sound theoretical analysis and a systematic design approach of double-layer metal superlens for near-field subwavelength imaging, such as fluorescent micro/nanoscopy or plasmonic nanolithography.

Funder

Shanghai Pujiang Program

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3