Dynamical Behavior of Two Interacting Double Quantum Dots in 2D Materials for Feasibility of Controlled-NOT Operation

Author:

Kesorn AniwatORCID,Hunkao Rutchapon,Tivakornsasithorn KritsanuORCID,Sinsarp Asawin,Sukkabot Worasak,Suwanna SujinORCID

Abstract

Two interacting double quantum dots (DQDs) can be suitable candidates for operation in the applications of quantum information processing and computation. In this work, DQDs are modeled by the heterostructure of two-dimensional (2D) MoS2 having 1T-phase embedded in 2H-phase with the aim to investigate the feasibility of controlled-NOT (CNOT) gate operation with the Coulomb interaction. The Hamiltonian of the system is constructed by two models, namely the 2D electronic potential model and the 4×4 matrix model whose matrix elements are computed from the approximated two-level systems interaction. The dynamics of states are carried out by the Crank–Nicolson method in the potential model and by the fourth order Runge–Kutta method in the matrix model. Model parameters are analyzed to optimize the CNOT operation feasibility and fidelity, and investigate the behaviors of DQDs in different regimes. Results from both models are in excellent agreement, indicating that the constructed matrix model can be used to simulate dynamical behaviors of two interacting DQDs with lower computational resources. For CNOT operation, the two DQD systems with the Coulomb interaction are feasible, though optimization of engineering parameters is needed to achieve optimal fidelity.

Funder

NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3