Polyol-Mediated Synthesis of V2O5–WO3/TiO2 Catalysts for Low-Temperature Selective Catalytic Reduction with Ammonia

Author:

Lee Min Seong,Choi Yeong JunORCID,Bak Su-Jeong,Son Mingyu,Shin Jeehoon,Lee Duck Hyun

Abstract

We demonstrated highly efficient selective catalytic reduction catalysts by adopting the polyol process, and the prepared catalysts exhibited a high nitrogen oxide (NOX) removal efficiency of 96% at 250 °C. The V2O5 and WO3 catalyst nanoparticles prepared using the polyol process were smaller (~10 nm) than those prepared using the impregnation method (~20 nm), and the small catalyst size enabled an increase in surface area and catalytic acid sites. The NOX removal efficiencies at temperatures between 200 and 250 °C were enhanced by approximately 30% compared to those of the catalysts prepared using the conventional impregnation method. The NH3-temperature-programmed desorption and H2-temperature-programmed reduction results confirmed that the polyol process produced more surface acid sites at low temperatures and enhanced the redox ability. The in situ Fourier-transform infrared spectra further elucidated the fast absorption of NH3 and its reduction with NO and O2 on the prepared catalyst surfaces. This study provides an effective approach to synthesizing efficient low-temperature SCR catalysts and may contribute to further studies related to other catalytic systems.

Funder

Ministry of Economy and Finance

Ministry of Trade, Industry, and Energy

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3