Towards Enhanced Eddy Current Testing Array Probes Scalability for Powder Bed Fusion Layer-Wise Imaging

Author:

Barrancos André1,Batalha Rodolfo L.2ORCID,Rosado Luís S.13ORCID

Affiliation:

1. Instituto de Telecomunicações, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal

2. Instituto de Soldadura e Qualidade, Avenida Professor Dr. Cavaco Silva, 33 Taguspark, 2740-120 Porto Salvo, Portugal

3. Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal

Abstract

This work presents a new eddy current testing array probe and readout electronics that target the layer-wise quality control in powder bed fusion metal additive manufacturing. The proposed design approach brings important benefits to the sensors’ number scalability, exploring alternative sensor elements and minimalist signal generation and demodulation. Small-sized, commercially available surface-mounted technology coils were evaluated as an alternative to usually employed magneto-resistive sensors, demonstrating low cost, design flexibility, and easy integration with the readout electronics. Strategies to minimize the readout electronics were proposed, considering the specific characteristics of the sensors’ signals. An adjustable single phase coherent demodulation scheme is proposed as an alternative to traditional in-phase and quadrature demodulation provided that the signals under measurement showed minimal phase variations. A simplified amplification and demodulation frontend using discrete components was employed together with offset removal, vector amplification, and digitalization implemented within the microcontrollers’ advanced mixed signal peripherals. An array probe with 16 sensor coils and a 5 mm pitch was materialized together with non-multiplexed digital readout electronics, allowing for a sensor frequency of up to 1.5 MHz and digitalization with 12 bits resolution, as well as a 10 kHz sampling rate.

Funder

FCT/MCTES through national funds

EU funds

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3