Affiliation:
1. The Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
Abstract
A wireless channel digital twin is a useful tool to evaluate the performance of a communication system at the physical or link level by generating the physical channel controllably. In this paper, a stochastic general fading channel model is proposed, which considered most of the channel fading types for various communication scenarios. By using the sum-of-frequency-modulation (SoFM) method, the phase discontinuity of the generated channel fading was well addressed. On this basis, a general and flexible generation architecture for channel fading was developed on a field programmable gate array (FPGA) platform. In this architecture, improved CORDIC-based hardware circuits for the trigonometric function, exponential function, and natural logarithm were designed and implemented, which improved the real-time performance of the system and the utilization rate of the hardware resources compared with the traditional LUT and CORDIC method. For a 16-bit fixed-point data bit width single-channel emulation, the hardware resource consumption was significantly reduced from 36.56% to 15.62% for the overall system by utilizing the compact time-division (TD) structure. Moreover, the classical CORDIC method brought an extra latency of 16 system clock cycles, while the latency caused by the improved CORDIC method was decreased by 62.5%. Finally, a generation scheme of a correlated Gaussian sequence was developed to introduce a controllable arbitrary space–time correlation for the channel generator with multiple channels. The output results of the developed generator were consistent with the theoretical results, which verified the correctness of both the generation method and hardware implementation. The proposed channel fading generator can be applied for the emulation of large-scale multiple-input, multiple-output (MIMO) channels under various dynamic communication scenarios.
Funder
the National Natural Science Foundation of China
the Natural Science Foundation of Jiangsu Province
the open research fund of the National Mobile Communications Research Laboratory, Southeast University
the Key Technologies R&D Program of Jiangsu
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference39 articles.
1. Real-Time Geometry-Based Wireless Channel Emulation;Hofer;IEEE Trans. Veh. Technol.,2019
2. Physical Stint Virtual Representation of Biomedical Signals With Wireless Sensors Using Swarm Intelligence Optimization Algorithm;Shitharth;IEEE Sens. J.,2023
3. Digital Twins. A Survey on Enabling Technologies, Challenges, Trends and Future Prospects;Mihai;IEEE Commun. Surv. Tutor.,2022
4. Wu, J., Yang, Y., Cheng, X., Zuo, H., and Cheng, Z. (2020, January 6–8). The Development of Digital Twin Technology Review. Proceedings of the 2020 Chinese Automation Congress, Shanghai, China.
5. Real-Time Vehicular Wireless System-Level Simulation;Hofer;IEEE Access,2021
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献