Performance Evaluation Method for Intelligent Computing Components for Space Applications

Author:

Xie Man12,Wang Lianguo1,Ma Miao1,Zhang Pengfei12

Affiliation:

1. National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The computational performance requirements of space payloads are constantly increasing, and the redevelopment of space-grade processors requires a significant amount of time and is costly. This study investigates performance evaluation benchmarks for processors designed for various application scenarios. It also constructs benchmark modules and typical space application benchmarks specifically tailored for the space domain. Furthermore, the study systematically evaluates and analyzes the performance of NVIDIA Jetson AGX Xavier platform and Loongson platforms to identify processors that are suitable for space missions. The experimental results of the evaluation demonstrate that Jetson AGX Xavier performs exceptionally well and consumes less power during dense computations. The Loongson platform can achieve 80% of Xavier’s performance in certain parallel optimized computations, surpassing Xavier’s performance at the expense of higher power consumption.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

1. Lovelly, T.M., Bryan, D., Cheng, K., Kreynin, R., George, A.D., Gordon-Ross, A., and Mounce, G. (2014, January 1–8). A framework to analyze processor architectures for next-generation on-board space computing. Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA.

2. Doyle, R., Goforth, M., Some, R., Powell, W., Whitaker, W., Bergman, L., Johnson, M., and Lowry, M. (2013). Human and Robotic Space Mission Use Cases for High-Performance Spaceflight Computing, AIAA.

3. Doyle, R., Some, R., Powell, W., Mounce, G., Goforth, M., Horan, S., and Lowry, M. (2014, January 17–19). High Performance Spaceflight Computing; Next-Generation SpaceProcessor: A Joint Investment of NASA and AFRL. Proceedings of the International Symposium on Artificial Intelligence, Robotics, and Automation in Space (i-SAIRAS), Montreal, QC, Canada.

4. Mounce, G., Lyke, J., Horan, S., Powell, W., Doyle, R., and Some, R. (2016, January 5–12). Chiplet based approach for heterogeneous processing and packaging architectures. Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA.

5. Can, L. (2019). Research on GPU Array Parallel Algorithm for Geometric Correction of Remote Sensing Images. [Master’s Thesis, University of Electronic Science and Technology of China].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3