Effects of Different Land Use Types and Soil Depth on Soil Nutrients and Soil Bacterial Communities in a Karst Area, Southwest China

Author:

Li Yuke,Gong Jiyi,Liu Jie,Hou Wenpeng,Moroenyane ItumelengORCID,Liu YinglongORCID,Jin Jie,Liu Jie,Xiong Han,Cheng ChenORCID,Malik KamranORCID,Wang JianfengORCID,Yi Yin

Abstract

To reveal the effect of the interactions between soil depth and different land use types on soil nutrients and soil bacterial communities in a karst area, fifty soil samples from five different karst land use types in Huajiang town, Guizhou province, Southwest China were collected, and the soil bacteria were analyzed using high-throughput absolute quantification sequencing. Our results showed that land use types (LUT) and soil depth (SD) significantly influenced the content of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), nitrate nitrogen (NN), ammonium nitrogen (AN) and available soil phosphorus (AP), and pH; further, the interaction of LUT and SD also significantly influenced SOC, NN, NA, AP, and pH. In addition, LUT clearly impacted the Chao1 and Shannon indexes, but, SD and LUT * SD markedly affect Chao1 and Shannon index, respectively. All the soil bacterial communities were significantly different in the five different five land use types according to PERMANOVA. Importantly, Acidobacteria and Proteobacteria were the predominant phyla at soil depths of 0–20 cm and 20–40 cm among all the LUTs. At 0–20 cm, TN, AN, and SOC exerted a strong positive influence on Acidobacteria, but NN exerted a strong negative influence on Acidobacteria; at 20–40 cm soil, TN and AN exerted a strong positive influence on Acidobacteria; TP exerted no marked influence on any of the phyla at these two soil depths. At 0–20 cm of soil depth, we also found that Chao1 index changes were closely related to the TN, SOC, AN, and NN; similarly, Shannon index changes were significantly correlated to the AN, TN, and SOC; the PCoA was clearly related to the TN, SOC, and AN. Interestingly, at soil depth of 20–40 cm, Chao 1 was markedly related to the TN and pH; Shannon was markedly correlated with the SOC, TP, AN, and AP; and the PCoA was significantly correlated with the TN and pH. Our findings imply that soil nutrients and soil bacteria communities are strongly influenced by land use types and soil depth in karst areas.

Funder

Changjiang Scholars and innovative Research Team in University

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3