Litter Decomposition in Wet Rubber and Fruit Agroforests: Below the Threshold for Tropical Peat Formation

Author:

Silvianingsih Yosefin AriORCID,van Noordwijk MeineORCID,Suprayogo Didik,Hairiah Kurniatun

Abstract

Peatlands are shaped by slow litter decomposition, but threshold decomposition rates that allow peat formation remain unclear. Can agroforestry in the tropics be compatible with paludiculture that allows peat formation? We explored the determinants of litter decomposition in wet agroforests adjacent to tropical peatlands in Central Kalimantan (Indonesia) by litterbag studies (up to 16 weeks) with standing litter sources to estimate rate constants, characterize litter quality (especially lignin (L), polyphenolics (Pp) and nitrogen (N)), and monitor temperature and groundwater levels. In litter transfer experiments we tested for home-field advantage (HFA) effects between land cover types. Mean residence times around 85 weeks at 27 °C were associated with a high (L + Pp)/N ratio. However, in the crossover treatments, mean residence times varied from 30 to 180 weeks and strong HFA effects (up to 80% faster decomposition at “home”) were found when litter from other sources was tested in old fruit-based agroforests. HFA indicates a local decomposer community well-adapted to its normal litter diet. Litter residence times of around two years are below the apparent peat formation threshold. Maintaining wet agroforest conditions adjacent to peat domes supports peatland rewetting and restoration but does not contribute to on-site peat formation processes.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Reference97 articles.

1. Tropical Soils, A Comprehensive Study of their Genesis;Mohr,1972

2. IN MEMORIAM BETJE POLAK (1901-1980), PIONEER OF PEAT RESEARCH IN THE NETHERLANDS AND IN THE TROPICS

3. Veen en veenontginning in Indonesia [Peat and peat exploitation in Indonesia];Polak;Indones. J. Nat. Sci.,1952

4. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment

5. Carbon dioxide balance of an oil palm plantation established on tropical peat

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3