Optimum Rate and Deep Placement of Nitrogen Fertilizer Improves Nitrogen Use Efficiency and Tomato Yield in Nepal

Author:

Pandit Naba RajORCID,Choudhary Dyutiman,Maharjan Shashish,Dhakal KrishnaORCID,Vista Shree PrasadORCID,Gaihre Yam KantaORCID

Abstract

In Nepal, blanket fertilizer recommendations without considering diverse soil types, nutrient status, climate and crop management practices along with imbalanced fertilization practices by farmers, mainly “urea fertilizer,” have resulted in reduced nitrogen use efficiency (NUE) and productivity in tomato production. Optimizing the rate of nitrogen (N) fertilizer, application time and improved application methods could increase crop yields and NUE and reduce environmental costs. This study was conducted to identify the optimum N rate and application method for increased tomato yield and NUE. Multilocation trials (n = 28) conducted in a randomized complete block design with nine treatments across five districts included the omission of N, P and K (N0, P0, K0), variable N rates of 100, 150, 200 and 250 kg ha−1 (N-100, N-150, N-200 and N-250), use of urea briquettes (UB) with deep placement (UBN-150) and a control (CK). N input in UB was reduced by 25% from the recommended N rate of 200 kg ha−1 considering its expected higher NUE. Yield responses from an NPK omission plot revealed N as the most limiting plant nutrient. Applications of fertilizer at N-100, N-150, N-200 and N-250 increased tomato yield by 27%, 35%, 43% and 27%, respectively, over N0. Tomato yields responded quadratically to the added N fertilizers with optimum rates ranging from 150 to 200 kg ha−1 across districts. UBN-150 significantly increased tomato yield by 12% over N-150 and produced a similar yield to N-200 (the recommended rate). The highest partial factor productivity of nitrogen (PFPN) was observed at N-100 and the highest agronomic efficiency of N (AEN) was at N-200. Deep placement of UB at-150 increased PFPN by 8% and 21% and AEN by 27% and 21% compared with N-150 and N-200, respectively. These results have positive implications for developing efficient N fertilization strategies to increase tomato yields and reduce environmental impacts in Nepal.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3