Biochar Additions Alter the Abundance of P-Cycling-Related Bacteria in the Rhizosphere Soil of Portulaca oleracea L. under Salt Stress

Author:

Egamberdieva DilfuzaORCID,Ma Hua,Shurigin VyacheslavORCID,Alimov JakhongirORCID,Wirth StephanORCID,Bellingrath-Kimura Sonoko DorotheaORCID

Abstract

Numerous reports confirm a positive impact of biochar amendments on soil enzyme activities, nutrient cycles, and, finally, plant growth and development. However, reports explaining the process behind such diverse observations are scarce. The aim of the present study was (1) to evaluate the effect of biochar on the growth of purslane (Portulaca oleracea L.) and nutrients; (2) to determine the response of rhizosphere enzyme activities linked to soil phosphorus cycling after bio-char amendment under non–saline and saline soil conditions. Furthermore, we investigate whether adding biochar to soil alters the abundance of P-cycling-related bacteria. Two rates of biochar (2% and 4%) were applied in pot experiments. Biochar addition of 2% significantly increased plant growth under non-saline and saline soil conditions by 21% and 40%, respectively. Moreover, applying biochar increased soil microbial activity as observed by fluorescein diacetate (FDA) hydrolase activity, as well as phosphomonoesterase activities, and the numbers of colony-forming units (CFU) of P-mobilizing bacteria. Soil amended with 2% biochar concentration increased total soil nitrogen (Nt), phosphorus (P), and total carbon (Ct) concentrations by 18%, 15%, and 90% under non-saline soil conditions and by 29%, 16%, and 90% in saline soil compared the control, respectively. The soil FDA hydrolytic activity and phosphatase strongly correlate with soil Ct, Nt, and P contents. The rhizosphere soil collected after biochar amendment showed a higher abundance of tricalcium phosphate-solubilizing bacteria than the control soil without biochar. Overall, this study demonstrated that 2% maize-derived biochar positively affects halophyte plant growth and thus could be considered for potential use in the reclamation of degraded saline soil.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3