Soil Management Practices to Mitigate Nitrous Oxide Emissions and Inform Emission Factors in Arid Irrigated Specialty Crop Systems

Author:

Zhu-Barker Xia,Easter Mark,Swan Amy,Carlson Mary,Thompson Lucas,Horwath William R.,Paustian Keith,Steenwerth Kerri L.

Abstract

Greenhouse gas (GHG) emissions from arid irrigated agricultural soil in California have been predicted to represent 8% of the state’s total GHG emissions. Although specialty crops compose the majority of the state’s crops in both economic value and land area, the portion of GHG emissions contributed by them is still highly uncertain. Current and emerging soil management practices affect the mitigation of those emissions. Herein, we review the scientific literature on the impact of soil management practices in California specialty crop systems on GHG nitrous oxide emissions. As such studies from most major specialty crop systems in California are limited, we focus on two annual and two perennial crops with the most data from the state: tomato, lettuce, wine grapes and almond. Nitrous oxide emission factors were developed and compared to Intergovernmental Panel on Climate Change (IPCC) emission factors, and state-wide emissions for these four crops were calculated for specific soil management practices. Dependent on crop systems and specific management practices, the emission factors developed in this study were either higher, lower or comparable to IPCC emission factors. Uncertainties caused by low gas sampling frequency in these studies were identified and discussed. These uncertainties can be remediated by robust and standardized estimates of nitrous oxide emissions from changes in soil management practices in California specialty crop systems. Promising practices to reduce nitrous oxide emissions and meet crop production goals, pertinent gaps in knowledge on this topic and limitations of this approach are discussed.

Funder

Agricultural Research Service

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Reference143 articles.

1. Greenhouse gas mitigation by agricultural intensification

2. In Deficit Irrigation Practices-Foreword. FAO Technical Papers-Water Reports No. 22http://www.fao.org/tempref/agl/AGLW/ESPIM/CD-ROM/documents/5K_e.pdf

3. Anthropogenic and natural radiative forcing,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3