A Three-Dimensional Assessment of Soil δ13C in a Subtropical Savanna: Implications for Vegetation Change and Soil Carbon Dynamics

Author:

Zhou YongORCID,Boutton Thomas W.ORCID,Wu X. Ben

Abstract

Tree/shrub encroachment into drylands is a geographically widespread vegetation change that often modifies soil organic carbon (SOC) storage and dynamics, and represents an important yet uncertain aspect of the global carbon (C) cycle. We quantified spatial patterns of soil δ13C to 1.2 m depth in a subtropical savanna to evaluate the magnitude and timing of woody encroachment, and its impacts on SOC dynamics. Woody encroachment dramatically altered soil δ13C spatial patterns throughout the profile; values were lowest in the interiors of woody patches, increased towards the peripheries of those patches, and reached highest values in the surrounding grasslands. Soil δ13C and 14C revealed this landscape was once dominated by C4 grasses. However, a rapid vegetation change occurred during the past 100–200 years, characterized by (1) the formation and expansion of woody patches across this landscape, and (2) increased C3 forb abundance within remnant grasslands. Tree/shrub encroachment has substantially increased SOC and the proportion of new SOC derived from C3 plants in the SOC pool. These findings support the emerging perspective that vegetation in many dryland ecosystems is undergoing dramatic and rapid increases in SOC storage, with implications for the C cycle at regional and global scales.

Funder

National Science Foundation

U.S. Department of Agriculture

Southwestern Association of Naturalists

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Reference93 articles.

1. Ecosystem Geography: From Ecoregions to Sites;Bailey,2009

2. The Earth as Transformed by Human Action: Global and Regional Changes in the Biosphere over the Past 300 Years;Jordan,1993

3. Carbon Sequestration in Dryland Ecosystems

4. Decoupling of soil nutrient cycles as a function of aridity in global drylands

5. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3