Control of Soil Extracellular Enzyme Activities by Clay Minerals—Perspectives on Microbial Responses

Author:

Olagoke Folasade K.,Kalbitz Karsten,Vogel Cordula

Abstract

Knowledge of how interactions of clay minerals and extracellular enzymes (EEs) influence organic matter turnover in soils are still under discussion. We studied the effect of different montmorillonite contents on EE activities, using two experiments—(1) an adsorption experiment with a commercially available enzyme (α-glucosidase) and (2) an incubation experiment (10 days) where microorganisms were stimulated to produce enzymes through organic carbon (OC) addition (starch and cellulose). Soil mixtures with different montmorillonite contents were created in four levels to a sandy soil: +0% (control), +0.1%, +1%, and +10%. The potential enzyme activity (pEA) of four enzymes, α-glucosidase, β-glucosidase, cellobiohydrolase, and aminopeptidase, involved in the soil carbon and nitrogen cycle were analysed. The adsorption experiment revealed a reduction in the catalytic activity of α-glucosidase by up to 76% with increasing montmorillonite contents. However, the incubation experiment showed an inhibitory effect on pEA only directly after the stimulation of in-situ EE production by OC addition. At later incubation stages, higher pEA was found in soils with higher montmorillonite contents. This mismatch between both experiments, with a transient reduction in catalytic activity for the incubation experiments, points to the continuous production of enzymes by soil microorganisms. It is conceivable that microbial adaptation is characterized by higher investment in EEs production induced by increasing clay contents and a stabilisation of the EEs by clay minerals. Our results point to the need to better understand EE-clay mineral-OC interactions regarding potential microbial adaptations and EE stabilisation with potentially prolonged activities.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3