Abstract
California is increasingly experiencing drought conditions that restrict irrigation deliveries to perennial nut crops such as almonds and pistachios. During drought, poorer quality groundwater is often used to maintain these crops, but this use often results in secondary salinization that requires skilled management. Process-based models can help improve management guidelines under these challenging circumstances. The main objective of this work was to assess seasonal soil salinity and root water uptake as a function of irrigation water salinity and annual rain amounts. The manuscript presents a comparison of three-year experimental and numerically simulated root zone salinities in and below the root zone of almond and pistachio drip-irrigated orchards at multiple locations in the San Joaquin Valley (SJV), California, with different meteorological characteristics. The HYDRUS-1D numerical model was calibrated and validated using field measurements of soil water contents and soil solute bulk electrical conductivities at four root zone depths and measured soil hydraulic conductivities. The remaining soil hydraulic parameters were estimated inversely. Observations and simulations showed that the effects of rain on root zone salinity were higher in fields with initially low salinities than in fields with high salinities. The maximum reduction in simulated root water uptake (7%) occurred in response to initially high soil salinity conditions and saline irrigation water. The minimum reduction in simulated water uptake (2.5%) occurred in response to initially low soil salinity conditions and a wet rain year. Simulated water uptake reductions and leaching fractions varied at early and late times of the growing season, depending on irrigation water salinity. Root water uptake reduction was highly correlated with the cumulative effects of using saline waters in prior years, more than salt leaching during a particular season, even when rain was sufficient to leach salts during a wet year.
Funder
U.S. Department of Agriculture
Subject
Earth-Surface Processes,Soil Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献