Plant Organic Matter Really Matters: Pedological Effects of Kūpaoa (Dubautia menziesii) Shrubs in a Volcanic Alpine Area, Maui, Hawai’i

Author:

Pérez Francisco L.

Abstract

This study examines litter accumulation and associated soil fertility islands under kūpaoa (Dubautia menziesii) shrubs, common at high elevations in Haleakalā National Park (Maui, Hawai’i). The main purposes were to: (i) Analyze chemical and physical properties of kūpaoa leaf-litter, (ii) determine soil changes caused by organic-matter accumulation under plants, and (iii) compare these with the known pedological effects of silversword (Argyroxiphium sandwicense) rosettes in the same area. Surface soil samples were gathered below shrubs, and compared with paired adjacent, bare sandy soils; two soil profiles were also contrasted. Litter patches under kūpaoa covered 0.57–3.61 m2 area and were 22–73 mm thick. A cohesive, 5–30-mm-thick soil crust with moderate aggregate stability developed underneath litter horizons; grain aggregation was presumably related to high organic-matter accumulation. Shear strength and compressibility measurements showed crusts opposed significantly greater resistance to physical removal and erosion than adjacent bare soils. As compared to contiguous bare ground areas, soils below shrubs had higher organic matter percentages, darker colors, faster infiltration rates, and greater water-retention capacity. Chemical soil properties were greatly altered by organic matter: Cations (Ca2+, Mg2+, K+), N, P, and cation-exchange capacity, were higher below plants. Further processes affecting soils under kūpaoa included microclimatic amelioration, and additional water input by fog-drip beneath its dense canopy. Substrate modifications were more pronounced below D. menziesii than A. sandwicense. Organic matter and available nutrient contents were higher under shrubs, where soils also showed greater infiltration and water-retention capacity. These trends resulted from contrasting litter properties between plant species, as kūpaoa leaves have higher nutrient content than silversword foliage. Different litter dynamics and reproduction strategies may also explain contrasting soil properties between the monocarpic rosettes and polycarpic kūpaoa. By inducing substantial substrate changes, Dubautia shrubs alter—or even create—different microhabitats and exert critical control on alpine soil development at Haleakalā.

Funder

University of Texas at Austin

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3