Soil Salinity Variations in an Irrigation Scheme during a Period of Extreme Dry and Wet Cycles

Author:

Chamaki Sheyda,Taghvaeian SalehORCID,Zhang HailinORCID,Warren Jason G.

Abstract

Salinization of irrigated lands is a major challenge towards supplying required food and feed to meet the needs of an increasing global population. In this study, the changes in soil salinity and several other chemical properties were investigated in an irrigation scheme during a period that experienced severe drought followed by above-normal precipitation. Soil salinity, represented by the electrical conductivity (EC) of the saturated paste extract, decreased for the top layers and increased for the bottom layers during the study period, suggesting some level of leaching had occurred. However, the change in the average EC of top 1.5 m of the soil was not statistically significant. The change in exchangeable sodium percentage (ESP) was not significant over the study period either. In contrast, average pH and calcium concentrations increased and decreased significantly during the study period, respectively. EC and ESP data were used in soil classification. The percentage of all sampled sites classified as saline was 60 at the beginning of the dry–wet period, but dropped to 50% at the end of this period. All tested parameters were temporally stable, preserving their spatial rank during the study period.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Reference42 articles.

1. Salinisation of Land and Water Resources: Human Causes, Extent, Management and Case Studies;Ghassemi,1995

2. Salinity Management for Sustainable Irrigation: Integrating Science, Environment, and Economics;Hillel,2000

3. Agricultural Drainage Water Management in Arid and Semi-Arid Areas;Tanji,2002

4. How to Manage Salinity in Irrigated Lands: A Selective Review with Particular Reference to Irrigation in Developing Countries;Kijne,1998

5. World Map of the Status of Human-Induced Soil Degradation: An Explanatory Note;Oldeman,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3