Digital, Three-Dimensional Visualization of Root Systems in Peat

Author:

Gribbe Stella,Blume-Werry GescheORCID,Couwenberg John

Abstract

Belowground plant structures are inherently difficult to observe in the field. Sedge peat that mainly consists of partly decayed roots and rhizomes offers a particularly challenging soil matrix to study (live) plant roots. To obtain information on belowground plant morphology, research commonly relies on rhizotrons, excavations, or computerized tomography scans (CT). However, all of these methods have certain limitations. For example, CT scans of peat cores cannot sharply distinguish between plant material and water, and rhizotrons do not provide a 3D structure of the root system. Here, we developed a low-cost approach for 3D visualization of the root system in peat monoliths. Two large diameter (20 cm) peat cores were extracted, frozen and two smaller peat monoliths (47 × 6.5 × 13 cm) were taken from each core. Slices of 0.5 mm or 1 mm were cut from one of the frozen monoliths, respectively, using a paper block cutter and the freshly cut surface of the monolith was photographed after each cut. A 3D model of the fresh (live) roots and rhizomes was reconstructed from the resulting images of the thinner slices based on computerized image analysis, including preprocessing, filtering, segmentation and 3D visualization using the open-source software Fiji, Drishti, and Ilastik. Digital volume measurements on the models produced similar data as manual washing out of roots from the adjacent peat monoliths. The constructed 3D models provide valuable insight into the three-dimensional structure of the root system in the peat matrix.

Funder

European Social Fund

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Reference26 articles.

1. The Role of Peatlands in Climate Regulation;Joosten,2016

2. Mire diversity in Europe: Mire regionality;Moen,2017

3. Analysis of vegetative plant macrofossils;Grosse-Brauckmann,1986

4. Hydrogenetische Moortypen in der Zeit—Eine Zusammenschau;Couwenberg,2001

5. Root Typ: a generic model to depict and analyse the root system architecture

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peat formation potential of temperate fens increases with hydrological stability;Science of The Total Environment;2024-10

2. Plant Nutrition—New Methods Based on the Lessons of History: A Review;Plants;2023-12-13

3. Advances in Root System Architecture: Functionality, Plasticity, and Research Methods;Journal of Resources and Ecology;2022-12-12

4. Digital Visual 3D Teaching Materials Dynamic Resources on Account of Mobile Terminal;2022 International Conference on Education, Network and Information Technology (ICENIT);2022-09

5. Digging roots is easier with AI;Journal of Experimental Botany;2021-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3