Author:
Schütze Elisabeth,Gypser Stella,Freese Dirk
Abstract
The availability of P is often insufficient and limited by accumulation in soils. This led to the necessity of solutions for the recovery as well as recycling of secondary P resources. Batch experiments were conducted with CaCl2 and citric acid to characterize P release kinetics from vivianite, hydroxyapatite, and bone char. While the P release during the CaCl2 treatment was so low that only vivianite and hydroxyapatite showed a slightly higher release with increasing CaCl2 concentration, the increase of dissolved P was more pronounced for citric acid. The application of citric acid resulted in a 32,190-fold higher P release for bone char. Fourier-transform infrared spectroscopic data suggested higher instability of hydroxyapatite than for bone char. The kinetic data showed that bone char, especially at a lower particle size, had a higher long-term P release than hydroxyapatite or vivianite. The suitability of hydroxyapatite and bone char as a poorly soluble, but sustainable P source is better than that of vivianite. However, the efficiency as a P fertilizer is also dependent on present soil P mobilization processes. The results underline the importance of the accessibility of fertilized or naturally bound P for plant roots to benefit from the excretion of organic acids.
Subject
Earth-Surface Processes,Soil Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献