Selenium Uptake from Livestock Pasture Extremely Enriched in Selenium, Molybdenum and Uranium: A Field and X-ray Absorption Study

Author:

McLoughlin Shauna L.1ORCID,Pattrick Richard A. D.1ORCID,Mosselmans J. Frederick W.2ORCID,Kelleher Joe3,van Dongen Bart E.1ORCID

Affiliation:

1. The Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

2. Diamond Light Source Ltd., Harwell Science and Innovation Campus, Chilton OX11 0DE, UK

3. Teagasc, Gortboy, Newcastlewest, Co. Limerick, V42DY03 Limerick, Ireland

Abstract

The agricultural soils of West Limerick, Ireland, contain very localised, extremely high natural Se concentrations that reach levels that are very toxic to grazing livestock. The Carboniferous shales that formed in anoxic deep-water marine environments are the source of the selenium, which, along with the other redox-sensitive elements of molybdenum, uranium, arsenic and vanadium, were mobilised and reprecipitated in post-glacial anoxic marshes. The result has been a history of selenosis and molybdenosis in livestock in this important dairy province. Soils collected at 10–20 cm from five different agricultural sites were analysed, and all yielded concentrations greatly in excess of the safe Se limits of 3–10 mg kg−1; the highest value recorded was 1265.8 mg kg−1 Se. The highest recorded value for Mo in these soils was 1627.5 mg kg−1, and for U, 658.8 mg kg−1. There was a positive correlation between Se, Mo U and organic matter in the soils. Analysis of non-accumulator pasture grasses (Lolium perenne (perennial ryegrass), Festuca arundinacea (tall fescue), Dactylis glomerata (cocksfoot) and Phleum pretense (timothy grass)) revealed the shoot/leaf to contain up to 78.05 mg kg−1 Se while Trifolium repens (white clover) leaves contained 296.15 mg kg−1 Se. An in situ growing experiment using the Se accumulator species Brassica oleracea revealed 971.2 mg kg−1 Se in the leaves of premier kale, which also contained 1000.4 mg kg−1 Mo. Translocation factors (TFs) were generally higher for Mo than Se across all plant species. Combined X-ray absorption near edge spectroscopy (XANES) with micro-X-ray fluorescence (μ-XRF) showed the Se was present in the soil predominantly as the reduced immobile phase, elemental Se (Se0), but also as bioavailable organoselenium species, mainly selenomethionine (SeMet). SeMet was also the main species identified within both the Se non-accumulator and Se accumulator plants. The Se soil–plant system in West Limerick is dominated by SeMet, and uptake into the cattle pasture results in selenosis in the grazing dairy herds. The hyperaccumulating Brassica oleracea species could be used to extract both the Se and Mo to reduce the toxicity of the blighted fields.

Funder

NERC Manchester–Liverpool Doctoral Training Partnership

UKRI HEIF Knowledge and Innovation Hub for Environmental Sustainability

Diamond Light Source at Beamline I18

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3