Study of Potentially Toxic Metal Adsorption in a Polluted Acid and Alkaline Soil: Influence of Soil Properties and Levels of Metal Concentration

Author:

Golia Evangelia E.1ORCID,Kantzou Ourania-Despoina12,Chartodiplomenou Maria-Anna2,Papadimou Sotiria G.1,Tsiropoulos Nikolaos G.3ORCID

Affiliation:

1. Laboratory of Soil Science, School of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece

2. Laboratory of Soil Science, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 384 46 Volos, Greece

3. Analytical Chemistry and Pesticides Laboratory, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 384 46 Volos, Greece

Abstract

In the present study, the adsorption of zinc (Zn), lead (Pb), copper (Cu), and cadmium (Cd) was studied in two already polluted urban soil samples with different pH values, an acidic and an alkaline one. The Langmuir and Freundlich adsorption isotherm equations were used to thoroughly study the adsorption of the metallic elements on the solid surface of the soils. Langmuir equation described the adsorption of each metal satisfactorily, with a slight predominance over Freundlich, in both soils, as the R2 value approached almost unity. Even though Zn and Cu were adsorbed on the soil phase, their adsorption was minimal compared to the adsorption of more harmful metals such as Pb and Cd. Using the values of the coefficients obtained from the equations of the mathematical models, we concluded that in alkaline soils, the retention of metals was much greater than in acidic soils. The simultaneous presence of metals during the addition of the single-element solutions of the metals to the already metal-contaminated soils caused competitive adsorption increasing the retention of the more toxic metals on the solid surface of the alkaline soil. Factors affecting soil sorption (such as soil pH and CaCO3 content) were studied to provide theoretical support for understanding the laws and causes of metal sorption in the soils of the survey.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3