Soil Respiration Is Influenced by Seasonality, Forest Succession and Contrasting Biophysical Controls in a Tropical Dry Forest in Northwestern Mexico

Author:

Vargas-Terminel Martha L.,Flores-Rentería DulceORCID,Sánchez-Mejía Zulia M.ORCID,Rojas-Robles Nidia E.,Sandoval-Aguilar Maritza,Chávez-Vergara BrunoORCID,Robles-Morua AgustínORCID,Garatuza-Payan Jaime,Yépez Enrico A.ORCID

Abstract

Soil respiration (RS) is an important component of the C cycle because it contributes significant CO2 emissions to the atmosphere that result from metabolism and respiration of its autotrophic and heterotrophic components. However, the relative importance of different biophysical controls that drive the variability of this flux and their influence along forest succession pathways is still unknown. We incorporate multiyear RS, ecosystem flux and meteorological measurements in old-growth (OG), mid-secondary (MS) and early-secondary (ES) tropical dry forests (TDFs) with the goal of assessing the temporal variation of RS and identifying the biophysical controls at each site by applying structural equation models (SEM). Along forest succession, RS followed the pattern of precipitation events; we identified by the end of the wet season that RS was sustained by a longer period at OG, while in MS and ES, RS decreased according to the soil moisture availability. According to SEM, soil moisture and soil temperature exert an effect on the variability of RS in all sites. However, we found that RS was also controlled by the vapor pressure deficit at MS and gross primary production at OG and ES. Our results suggest that seasonality has a different impact on RS along forest succession in TDFs found in northwestern Mexico and highlights the relevance of considering additional biophysical controls of RS for a better understanding this critical process of the C cycle.

Funder

Consejo Nacional de Ciencia y Tecnología

PROFAPI-ITSON

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3