Impact of Short-Term Cultivation on Some Selected Properties of Sandy Soil in an Arid Environment

Author:

Selmy Salman A. H.ORCID,Abd Al-Aziz Salah H.,Ibrahim Ahmed G.,Jiménez-Ballesta RaimundoORCID

Abstract

Soil management is recognized to have an impact on soil quality attributes. Depending on the management approach, this impact can either degrade or improve soil quality. There is a severe shortage of information on the impacts of cultivation on sandy soil properties in arid desert regions. Therefore, the objective of this study was to investigate the short-term cultivation effects (5 years) on the properties’ changes of coarse-textured soil in an arid desert region in western Assiut Governorate, Egypt. The current study was conducted on soils sampled at four depth intervals, namely 0–10, 10–20, 20–30, and 30–40 cm, from both cultivated and uncultivated soils, using a systematic sampling grid (10 × 10 m), to investigate the potential impacts of the cultivation process on six soil attributes. Each land use was represented by an area of 0.5 ha (50 × 100 m). A total of 160 composite soil samples (at all depths) were collected from both soils and analyzed for their physical and chemical properties, employing standard laboratory procedures. The data were statistically and geostatistically analyzed to compare the results and map the spatial distributions of the selected soil properties. The results revealed that cultivation had a considerable positive impact on most of the properties of cultivated soil compared to those of uncultivated soil (virgin land). The findings also showed that the available phosphorus levels in cultivated soil were higher than in virgin soil by 16, 9, 8.5, and 6 folds, with increases in organic matter content of 16.8, 12.4, 11.9, and 7.9 times at depths of 0–10, 10–20, 20–30, and 30–40 cm, respectively. Furthermore, compared to virgin soil, cultivated soil exhibited a salinity reduction of −8.9%, −56.4%, −66.3%, and −71.8%, at depths of 0–10, 10–20, 20–30, and 30–40 cm, respectively. Moreover, some other properties of the cultivated soil improved, particularly in the surface soil layers, such as pH reduction, CaCO3 decline, and CEC increase, while the soil texture grade did not change. Therefore, continuous monitoring of the effects of diverse soil management strategies in the short term assists in the understanding of the ongoing changes in soil physical and chemical characteristics, which is critical for maintaining satisfactory soil quality and sustainable soil productivity in arid lands.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Reference139 articles.

1. The Future of Food and Agriculture, Trends and Challenges, 2017.

2. Soil degradation as a reason for inadequate human nutrition;Lal;Food Secur.,2009

3. Climate Change and Soil Degradation Mitigation by Sustainable Management of Soils and Other Natural Resources;Lal;Agric. Res.,2012

4. Soils of arid and semi-arid areas;Verheye;Land Use, Land Cover and Soil Sciences-Volume II: Land Evaluation,2009

5. Long-term cultivation effects on soil properties variations in different landforms in an arid region of eastern Iran;Maleki;CATENA,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3