Phytotoxic Effects of Al on Root Growth Are Confounded in the Presence of Fulvic and Humic Acids

Author:

Harper Stephen1ORCID,Menzies Neal1ORCID

Affiliation:

1. School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD 4072, Australia

Abstract

Background and Aims: In acidic soils, aluminum (Al) toxicity remains a critical crop limitation that can be ameliorated by organic amendments through Al complexation with high-molecular-weight carbon compounds, particularly fulvic and humic acids (FA and HA) However, no research discriminates between the direct effects of FA and HA on plant growth and the indirect effect that occurs through ameliorating Al toxicity. This study delineates the direct and indirect effects of FA and HA on plant growth. Methods: Eucalyptus and Hay FA and HA, and Al effects on maize (Zea mays) root growth were investigated using dilute nutrient solution. Five Al concentrations (0–270 µM) were combined with four organic acid (OA) treatments, including Nil-OA, FA40, and HA40 (each at 40 mg C L−1) and a combined treatment FA40HA40 (80 mg C L−1). Results: Eucalyptus FA and HA stimulated root growth by ~20% compared with root growth in the Nil-OA (17.4 cm). In the absence of Al, Hay FA and HA inhibited root growth (by ~20%) compared with the Nil-OA but the addition of Al resulted in stimulation of root growth. In the presence of FA and HA, root growth was not inhibited by nominally toxic monomeric Al (Al3+) concentrations (~20 µM Al). However, when expressed on a relative basis to remove the direct effect of the ligand, the response was consistent with Al toxicity. Conclusions: The effects of FA and HA were either inhibitory or stimulatory depending on the source while both sources of FA and HA mitigated Al toxicity through complexation. The study provides mechanistic data that highlights limitations of soil bioassays where the direct effects of organic ligands on root growth are confounded with the indirect effect of their reduction of Al toxicity. These two independent processes must be considered in evaluating the amelioration of Al by organic amendments.

Funder

Australian Centre for International Agricultural Research

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Reference62 articles.

1. Noble, A.D., and Sumner, M.E. (2003). Handbook of Soil Acidity, CRC Press.

2. Mapping tree density at a global scale;Crowther;Nature,2015

3. Global extent, development and economic impact of acid soils;Mutert;Plant Soil,1995

4. Soil fertility dynamics after clearing a tropical rainforest in Peru;Sanchez;Soil Sci. Soc. Am. J.,1983

5. Timing, magnitude, and location of initial soluble aluminum injuries to Mungbean roots;Blamey;Soil Sci. Plant Nutr.,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3