Biochar Particle Size and Post-Pyrolysis Mechanical Processing Affect Soil pH, Water Retention Capacity, and Plant Performance

Author:

Liao Wenxi,Thomas Sean

Abstract

It has become common practice in soil applications of biochar to use ground and/or sieved material to reduce particle size and so enhance mixing and surface contact between soils and char particles. Smaller particle sizes of biochars have been suggested to enhance liming effects and nutrient exchange, and potentially to increase water storage capacity; however, data remains scarce and effects on plant growth responses have not been examined. We manipulated biochar particle size by sieving or grinding to generate particles in two size ranges (0.06–0.5 mm and 2–4 mm), and examined effects on soil pH, soil water retention, and plant physiological and growth performance of two test species (ryegrass: Lolium multiflorum, and velvetleaf: Abutilon theophrasti) grown in a granitic sand culture. The small particle sieved biochar had the largest liming effect, increasing substrate pH values by an additional ~0.3 pH units compared to other biochars. Small particle size biochar showed enhanced water retention capacity, and sieved biochars showed 91%–258% larger water retention capacity than ground biochars of similar particle size, likely because sieved particles were more elongated than ground particles, and thus increased soil interpore volume. The two plant species tested showed distinct patterns of response to biochar treatments: ryegrass showed a better growth response to large biochar particles, while velvetleaf showed the highest response to the small, sieved biochar treatment. We show for the first time that post-processing of biochars by sieving and grinding has distinct effects on biochar chemical and physical properties, and that resulting differences in properties have large but strongly species-specific effects on plant performance in biochar-amended substrates.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Reference58 articles.

1. Biochar for Environmental Management: Science, Technology and Implementation;Lehmann,2015

2. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis

3. Biochar and forest restoration: a review and meta-analysis of tree growth responses

4. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review

5. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand;Novak;Ann. Environ. Sci.,2009

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3