Organic Residues and Ammonium Effects on CO2 Emissions and Soil Quality Indicators in Limed Acid Tropical Soils

Author:

Bramble De,Gouveia Gregory,Ramnarine Ravindra

Abstract

Aglime (agricultural lime), commonly applied to acid soils to increase the soil pH and productivity, may lead to the release of CO2 into the atmosphere or to carbon (C) sequestration, although the processes involved are not fully understood. As large acreages of arable land are limed annually, exploring soil management practices that reduce aglime-induced CO2 emissions from acid soils while maintaining or improving the soil quality is paramount to mitigating the effects of global climate change. This study, therefore, assessed the effects of organic residues and ammonium on CO2 emissions and soil quality indicators in two limed soils. Two contrasting acid soils (Nariva series, Mollic Fluvaquents and Piarco series, Typic Kanhaplaquults) were amended with varying combinations of aglime (0% and 0.2% w/w CaCO3), organic residue (0% and 5% w/w biochar or poultry litter), and NH4-N (0% and 0.02% w/w) and were incubated in 300 mL glass jars for 31 days. The sampling for CO2 was performed on 11 occasions over the course of the incubation, while soil sampling was conducted at the end. The results indicate that aglime application significantly (p < 0.05) increased the cumulative CO2 emissions in all cases except with the addition of poultry litter. Alternatively, ammonium did not regulate the effect of aglime on CO2 emissions, which was l because of the low rate at which it was applied in comparison to aglime. The results also showed that poultry litter significantly (p < 0.05) increased the soil electrical conductivity (EC), available nitrogen (N), and pH, especially in the Piarco soil, while the hardwood biochar had little to no effect on the soil properties. Our findings indicate the potential for utilizing poultry litter to reduce the impact of aglime on CO2 emissions while improving the soil quality. Further studies utilizing 13C to trace aglime CO2 emissions are, however, required to identify the mechanism(s) that contributed to this reduction in the emissions.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3