Symbiotic and Asymmetric Causality of the Soil Tillage System and Biochar Application on Soil Carbon Sequestration and Crop Production

Author:

Bogale Amare Assefa12,Melash Anteneh Agezew3,Percze Attila1

Affiliation:

1. Institute of Crop Production, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary

2. Department of Horticulture, College of Agriculture and Natural Resource, Mekdela Amba University, Tulu Awulia P.O. Box 32, Ethiopia

3. Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Crop Sciences, University of Debrecen, Boszorm’enyi Str. 138, 4032 Debrecen, Hungary

Abstract

Agriculture faces a significant challenge in maintaining crop production to meet the calorie demand of the ever-growing population because of limited arable land and climate change. This enforces a search for alternative multifarious agricultural-based solutions to meet the calorie demand. In search of alternatives, agricultural soil management has been highlighted and is expected to contribute to climate change mitigation through soil carbon sequestration and reduce greenhouse gas emissions through effective agricultural management practices. The addition of biochar to the soil significantly improves the soil nitrogen status, soil organic carbon, and phosphorus, with greater effects under the different tillage systems. This symbiosis association could further change the bacterial structure in the deeper soil layer which thus would be important to enhancing productivity, particularly in vertisols. Biochar also has an environmental risk and negative consequences. Heavy metals could be present in the final food products if we use contaminated raw materials to prepare biochar. However, there is a need to investigate biochar application under different climatic conditions, seasons, soil tillage systems, and crop types. These indicate that the positive effect of proper biochar fertilization on the physiology, yield formation, nutrient uptake, and soil health indicators substantiate the need to include biochar in the form of nutrients in the crop production sector, especially in light of the changing climate and soil tillage systems.

Funder

Tempus Public Foundation

Ministry of Education of Ethiopia

Mekdela Amba University

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3