Robustness of Optimized Decision Tree-Based Machine Learning Models to Map Gully Erosion Vulnerability

Author:

Eloudi Hasna1,Hssaisoune Mohammed123ORCID,Reddad Hanane4,Namous Mustapha5ORCID,Ismaili Maryem5,Krimissa Samira5,Ouayah Mustapha5,Bouchaou Lhoussaine13ORCID

Affiliation:

1. Applied Geology and Geo-Environment Laboratory, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco

2. Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul 86150, Morocco

3. International Water Research Institute, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco

4. Laboratoire d’Ingénierie & de Technologies Appliquées (LITA), École Supérieure de Technologie de Beni Mellal, Sultan Moulay Slimane University, Beni-Mellal 23000, Morocco

5. Data Science for Sustainable Earth Laboratory (Data4Earth), Sultan Moulay Slimane University, Beni-Mellal 23000, Morocco

Abstract

Gully erosion is a worldwide threat with numerous environmental, social, and economic impacts. The purpose of this research is to evaluate the performance and robustness of six machine learning ensemble models based on the decision tree principle: Random Forest (RF), C5.0, XGBoost, treebag, Gradient Boosting Machines (GBMs) and Adaboost, in order to map and predict gully erosion-prone areas in a semi-arid mountain context. The first step was to prepare the inventory data, which consisted of 217 gully points. This database was then randomly subdivided into five percentages of Train/Test (50/50, 60/40, 70/30, 80/20, and 90/10) to assess the stability and robustness of the models. Furthermore, 17 geo-environmental variables were used as potential controlling factors, and several metrics were examined to evaluate the performance of the six models. The results revealed that all of the models used performed well in terms of predicting vulnerability to gully erosion. The C5.0 and RF models had the best prediction performance (AUC = 90.8 and AUC = 90.1, respectively). However, according to the random subdivisions of the database, these models exhibit small but noticeable instability, with high performance for the 80/20% and 70/30% subdivisions. This demonstrates the significance of database refining and the need to test various splitting data in order to ensure efficient and reliable output results.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3