Long Term of Soil Carbon Stock in No-Till System Affected by a Rolling Landscape in Southern Brazil

Author:

Thomaz Edivaldo L.1ORCID,Kurasz Julliane P.2ORCID

Affiliation:

1. Soil Erosion Laboratory, Department of Geography, Universidade Estadual do Centro-Oeste, UNICENTRO, Élio Antonio Dalla Vecchia, 838-Bairro-Vila Carli, Guarapuava 85040-080, Brazil

2. Department of Geography, Universidade Estadual do Centro-Oeste, UNICENTRO, Élio Antonio Dalla Vecchia, 838-Bairro-Vila Carli, Guarapuava 85040-080, Brazil

Abstract

In the 1960s, a conservationist agricultural practice known as a “no-tillage system” was adopted. Several benefits such as soil erosion reduction and soil carbon sequestration, among others, could be ascribed to no-till systems. Therefore, it is important to evaluate the long-term sustainability of this agricultural system in different environments. This study has the objective to evaluate the soil organic carbon dynamic in a no-till system (40-year) and on a rolling landscape in Southern Brazil. A systematic grid with four transversal–longitudinal transects was used for soil sampling. Soil samples from 0–20, 20–40, and 40–60 cm depths were collected (16 trenches × 3 depths × 1 sample per soil layer = 48), and a forest nearby was used as control (4 trenches × 3 depths × 1 sample = 12). The soil at the forest site showed 20% more carbon stock than no-till at the 0–20 cm soil depth. However, the entire no-till soil profile (0–60 cm) showed similar soil carbon as forest soil. The soil carbon stock (0–20 cm) in no-till was depleted at a rate of 0.06 kg C m−2 year−1, summing up to a carbon loss of 2.43 kg C m−2. In addition, the non-uniform hillslope affected the soil carbon redistribution through the landscape, since the convex hillslope was more depleted in carbon by 37% (15.87 kg C m−2) when compared to the concave sector (25.27 kg C m−2). On average, the soil carbon loss in the subtropical agroecosystem was much lower than those reported in literature, as well as our initial expectations. In addition, the no-till system was capable of preserving soil carbon in the deepest soil layers. However, presently, the no-till system is losing more carbon in the topsoil at a rate greater than the soil carbon input.

Funder

Brazilian Research and Development Council

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Soil carbon storage under different types of arid land use in Algeria;Environmental Geochemistry and Health;2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3