Surface Coal Mine Soils: Evidence for Chronosequence Development

Author:

Smart Kyle E.1ORCID,Singer David M.1

Affiliation:

1. Department of Earth Sciences, Kent State University, Kent, OH 44242, USA

Abstract

Anthropogenic changes to soil properties and development can dominate soil systems, particularly in coal mining-impacted landscapes of the Appalachian region of the United States. Historical mining operations deposited spoils which are developing into mine soils in chronosequences, allowing for a correlation between emplacement age and rates of change in soil properties. The study site was in the Huff Run Watershed (Mineral City, OH, USA) with a series of eleven spoil piles that were deposited over a 30-year time period. Surface soils were analyzed for bulk density, loss on ignition (LOI) as a proxy for organic matter, particle size, and bulk mineralogical (by X-ray diffraction) and elemental (by X-ray fluorescence) compositions. The following linear trends were observed across the transect from older to younger mine soils: bulk density increased from 1.0 cm−3 to 1.5 g cm−3; LOI decreased from ~20% to 5%; the content of sand-sized particles and quartz decreased from ~50% to 30% and 50% to 25%, respectively, with a corresponding increase in the contribution of clay mineral from ~25% to 60%; and Fe and other trace metals (Cu, Ni, Pb, Sb, Sn, and Te) decreased in concentration, while Al, Mg, and K increased in concentration. These trends are likely the result of: (1) organic matter accumulation as vegetation becomes more abundant over time; (2) transport of clays out of more recently emplaced waste; and (3) oxidative dissolution of primary sulfides releasing Fe and other trace metals followed by re-precipitation of secondary Fe-phases and trace metal sequestration. The findings presented here provide insight into the future behavior of these materials and can potentially be used to assess the inferred age of previously unexamined mine soils across a wider geographic area. These results can also inform decisions related to reclamation activities and ecosystem restoration.

Funder

Kent State University Research Council

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3